

COMMERCIAL PRODUCTS

LINE CARD - 2024

WHAT WE DO

We specialize in Steam, Hot Water, Process Heating & Cooling, HVAC and Water/Energy conservation. Applications we can assist you with include (but not limited to):

Blow Down Heat Recovery
Boilers (Steam & Hot Water)

Burners (Various Fuels)

Circulating Pumps

Commercial/Industrial Water Heating

Controls & Instrumentation

Condensers

Domestic Water Booster Systems Domestic

Water Heaters Dry Coolers

Economizers & Stack Heat Recovery

Energy Conservation

Engineered Skid Packages

Expansion Joints

Heat Exchangers & Heat Transfer Products

Hydronic Accessories & Specialties

Metal & Fabrication Joints

Motor Control Products

Pipe Motion Control

Pressure Vessels & Tanks

Pumps & Pumping Systems

Packaged Booster Systems

Radiant Floor Heating Systems Reverse

Osmosis Systems

Sample Coolers

Steam & Condensate Handling Products

Steam Ancillary Products

Storage Tanks

Thermal Expansion Tanks

Water Quality & Filtration

Water Heating Systems

Waste Heat Recovery

and more...

SIGN UP AT WWW.FLUIDH.COM

Our classroom allows us to offer a variety of CEU and PDH courses in Pumping, HVAC and Steam-related topics. Come view and learn on our fully functioning, live Steam and Hot Water hands-on training display boards! In need of specific training? Let us know! We can come to you or host the class in our facility. At Fluid Handling, we strive to educate.

MANUFACTURERS WE REPRESENT

BARNES

REFERENCES

CONVERSION FACTORS

MULTIPLY -	BY ————————————————————————————————————	TO OBTAIN
Cubic Feet	7.48	Gallons
Gallons of Water	8.345	Lbs. of Water
Gallons of Water	0.1337	Cubic Feet
Feet of Water	0.432	PSI
Horsepower	33,000	Foot - Lbs.
Horsepower	0.746	KW
Horsepower	2545	Btu/hr
Horsepower (Boiler)	33,493	Btu/hr
In. of Mercury	1.13	Feet of Water
Kilograms	2.2	Pounds
KW	3413	Btu/hr
Liters	0.2642	Gallons
Parts/million	0.0584	Grains/US gal
Pounds	7,000	Grains
Pounds/sq. inch	2.036	Inches Mercury
Square Foot EDR	240	Btuh
TO OBTAIN	BY <	DIVIDE

CONDENSATE PUMP SIZING

PUMPS:						
1. Heating Load in Btu/hr						
2. Load from Step 1 ÷ Latent Heat of available						
steam =	#/hr of condensate					
3. #/hr condensate ÷ 500 =						
of condensate						
4. Recommended Pump Capacity =						
(2.5 or 3.0) x Step 3 =	GPM					
5. Pump Head =						
Static Llift in Feet						
+ Friction Losses in Feet _						
+ Pressure in vessel that pump is pumping						
toPSIG	x 2.31 =					
= Total head required of pu						

RECEIVER: (Minimum) Condensate:

1 minute x GPM from Step 4 = Gallons

Boiler Feed:

1 Boiler Horsepower = 1 Gallon receiver cap. (gross)

Capacity of Cylindrical Tank (U.S. Gal.) = diameter (in feet) squared x length (in feet) x 5.88

PROPERTIES OF SATURATED STEAM

Gauge Press. (lbs.)	Temp °F	Lat. Heat	Gauge Press. (lbs.)	Temp. °F	Lat. Heat
2	219	965	90	331	885
5	227	960	100	338	880
10	239	952	125	353	868
15	250	945	150	366	857
20	259	939	175	377	847
25	267	933	200	388	838
30	274	928	225	397	830
40	287	919	250	406	822
50	298	911	275	414	812
60	307	904	300	422	805
70	316	897	325	429	797
80	324	891	350	436	786

CALCULATING HEAT EXCHANGE LOADS

Q = 500 x GPM x (T2 - T1) x SP HT x SP GR Typical Values for SP HT and SP GR:

	At 20° F		At 200°F	
Fluid	SP HT	SP GR	SP HT	SP GR
Water	*	*	1.0	1.0
50% Eth Gly	.75	1.08	.87	1.02
40% Eth Gly	.81	1.06	.90	1.01
50% Prop Gly	.84	1.06	.92	.99
40% Prop Gly	.88	1.05	.95	.98
SAE 30 Oil	.41	.91	.52	.84
#6 Fuel Oil	.40	1.0	.49	.94
Soybean Oil	.41	.94	.51	.87
Therminol 66	.36	1.03	.44	.96

^{*} Use 1.0 for temperatures of 32°F to 212°F.

USEFUL INFORMATION

Pump Hp =

(GPM x Ft Head x SP Gr)

3960 x Pump Efficiency

Temperature Conversion

 $^{\circ}F = (^{\circ}C \times 9/5) + 32$ $^{\circ}C = (^{\circ}F - 32) \times 5/9$

CONNECT WITH US

W140N9061 LILLY RD MENOMONEE FALLS WI, 53051

414.358.2646

INFO@FLUIDH.COM